

Feb 19-8:47 AM

Dec 14-7:30 AM

$$
\begin{aligned}
r=-.860 \quad \text { CTS } t & =r \cdot \sqrt{\frac{n-2}{1-r^{2}}} \\
\begin{aligned}
r^{2}=.739 \\
n=6
\end{aligned} & =-.860 \cdot \sqrt{\frac{6-2}{1-.739}} \\
& =-.860 \cdot \sqrt{\frac{4}{.261}} \\
& =-3.367
\end{aligned} \quad \begin{aligned}
\text { For P-value } \\
t \text { TTT df }=n-2
\end{aligned} \quad \begin{aligned}
\text { P-value } & =2 \cdot \text { tcdf }(- \text { - } 99,-3.367,4) \\
& =.028
\end{aligned}
$$

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Dec 14-7:45 AM

Test the claim to determine whether Linear Correlation is significant or not. © NO $\alpha \rightarrow$ Use . 05

$H_{0}: \rho=0$	Linear Correlation is not Significant
$H_{1}: \rho \neq 0$	Linear correlation is Significant

we got p-value . 011
P-value $\leq \alpha \quad H_{0}$ invalid $.011 .05 \quad H_{1}$ valid-pLinear Correlation is Significant
Predict exam Score if QZ Score is 8 .
Since r is Significant \Rightarrow Use Regression Line
SG 33\}
$y \approx 32+6 x$
$=32+6(8)$
$=32+48$
$=80$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

